IEEE Kansai Section 第93回 技術講演会

IEEE 関西支部 会員各位
IEEE Kansai Section Members

IEEE Kansai Section
Chair
Hironori Yamauchi
山内 寛紀

IEEE Kansai Section 第93回 技術講演会のご案内
The 93rd IEEE Kansai Section Lecture Meeting

IEEE 関西支部では、会員サービスの一環として技術講演会を企画・実施しています。

第93回は、Panasonic R&D Center Singapore の Jane Shen Shengmei 氏をお招きし、下記のとおり開催いたします。

IEEE 会員以外の方もご参加いただけます。ご周知いただければ幸いです。

IEEE Kansai Section will have the 93rd IEEE Kansai Section Lecture Meeting as follows.

技術講演会概要

講演会テーマ (Title)

AI/Deep Learning, Its Principle and Applications in Robot and Self-Driving Car

講演者 (Lecturer)

  • Jane Shen Shengmei 氏
    Assistant Director, Panasonic R&D Center Singapore

日時 (Time & Date)

2016年 8月 22日 (月) 15:00-16:00
Monday, August 22, 2016, 15:00-16:00

場所 (Place)

同志社大学 京田辺キャンパス 香知館 KC308会議室
京都府京田辺市多々羅都谷 1-3
アクセス

主催 (Organizer)

IEEE Kansai Section

共催 (Co-Organizer)

IEEE Computer Society Kansai Chapter
同志社大学 モビリティ研究センター

言語 (Language)

英語 (English)

プログラム (Program)

15:00-16:00
講演 「AI/Deep Learning, Its Principle and Applications in Robot and Self-Driving Car」
Ms. Jane Shen Shengmei
(Assistant Director, Panasonic R&D Center Singapore)

講演内容 (Abstract)

AI (Artificial Intelligence) is very hot now, why it is so? What is the principle and are the promising applications and evidence? This talk will introduce AI, machine Learning, Deep Learning and their relationship. Deep Learning has raised Artificial Intelligence to another level because of Big data and super powerful computation. Deep Learning is a new area of Machine Learning research, with the objective of moving Machine Learning closer to its original goals: Artificial Intelligence. Deep Learning Statement: Accuracy is improved from 95% to 99% with the good robustness, means a “Game Changing”, to make impossible be possible, to derive super intelligence beyond human brain! By providing some application example it will help to understand the power of Artificial Intelligence.

This talk will also introduce Deep Reinforcement Learning with application example in robot and self-driving car to show one of the future trends for Deep Learning development, how to move from supervised learning to unsupervised or self-supervised learning.

講演者略歴 (Biography)

Jane Shen Shengmei

Assistant Director, Panasonic R&D Center Singapore

Jane Shen Shengmei, now is Assistant Director from PRDCSG (Panasonic R&D Center Singapore). She was graduated from Xidian University in China in 1984 and obtained her Master degree in 1986 there. She entered Panasonic R&D Center in Singapore in 1991, worked in image & video coding and processing in the past years to contribute to MPEG standardization. She also worked in digital rights management for couple of years.

In 1999 a new research team in Image Recognition was set-up and now growing bigger with her vision and leadership to focus on deep learning related AI development for surveillance, robotics, automotive and other applications. In 2007 a 3D and camera processing team was also set-up to strengthen future entertainment and autonomous business together with deep learning advancement.

Machine Learning with Geometric and Signal Processing combining with Panasonic excellent sensors would bring many changes to our life, which is in line with our Panasonic Slogan “A Better Life, A Better World.”

参加費 (Registration fee)

講演会: 無料 (Free)

参加申込み先 (Contact for registration)

IEEE 関西支部テクニカルプログラムコミッティ
(※同志社大学 京田辺キャンパス内)
Tel: (0774) 65 6295
E-mail: ikantpcアットmail.doshisha.ac.jp
(アットを @ に変換し、送信してください。)

参加ご希望の方は 8月 20日 (土) までに E-mail にて以下をお知らせください。

  • 第93回 技術講演会へのご参加
  • ご所属
  • お名前 (ふりがな)
  • IEEE 会員番号 (会員の場合)

Please register in advance by E-mail with the information of IEEE member ID (if you have), your name, affiliation by August 20, 2016 (Saturday).

皆様の多数のご参加をお待ち申し上げます。IEEE 会員以外の方もご参加いただけます。ご周知いただければ幸いです。

本件連絡先 (For further information)

IEEE Kansai Section Technical Program Committee Chair
程 俊 (てい しゅん Jun CHENG)
(同志社大学 理工学部 インテリジェント情報工学科)
jchengアットmail.doshisha.ac.jp
(アットを @ に変換し、送信してください。)

ページのトップへ

$LastChangedDate: 2016-10-31 $

Copyright© IEEE Kansai Section All Rights Reserved