IEEE 会員各位 IEEE MTT-S Kansai Chapter Chair 石崎俊雄 **************************************************************** IEEE MTT-S Kansai Chapter Distinguished Microwave Lecturer 講演会 **************************************************************** IEEE MTT-S Kansai Chapter では,下記のように 2014-2016年 Distinguished Microwave Lecturer である Villanova University のRobert H. Caverly 先生をお招きし,核磁気共鳴画像法 (MRI) に ついてご講演頂きます.奮ってご参加ください. なお,聴講は無料,事前登録は不要です.直接会場にお越しください. ●日時: 2014 年 11月 10日(月) 13:30 〜 15:00 ●場所: 龍谷大学瀬田キャンパス 3号館104教室 交通アクセス:http://www.ryukoku.ac.jp/about/campus_traffic/traffic/t_seta.html キャンパス内地図: http://www.ryukoku.ac.jp/seta.html ●概要 核磁気共鳴画像法(MRI)は,原子核の磁気共鳴現象を利用して 生体内の内部の情報を画像にする方法として知られています. 本ワークショップでは,MRIの基礎となる物理現象,MRIの基本構成, MRIで重要な役割を担う高周波送受信システム,および送受信素子の モデリング化と制御法に関連する講演を行います. ●参加無料 (IEEE非会員の方も参加できます) ●講師:Professor Robert H. Caverly,(Villanova University) Abstract Magnetic Resonance Imaging (MRI) scanners are an important diagnostic tool for the medical practitioner. MRI provides a non-invasive means of imaging soft tissues and to obtain real-time images of the cardiovascular system and other dynamic changes in the human body. MRI scanners rely heavily on a number of topical areas of interest to Electrical Engineers: image processing, high speed computing and RF (radio frequency) systems and components. This presentation will focus on some of the RF aspects of the MR process and MR scanners. A primer on the physical phenomenon behind magnetic resonance will start the presentation and include a discussion of the origin of the MR signal. The need for the high static magnetic field (B0), the use of gradient coils for MR signal location, simple RF pulse sequences and how they are used in image construction will be covered. This MR image construction process and the control of the various steps that manipulate the atomic nuclei to generate the final MR diagnostic image put demanding constraints on RF equipment capabilities and these will be discussed, along with a high-level overview of the various components making up conventional MRI systems. This high-level overview will include a look at various examples of transmit and receive RF systems and examples of transmit and receive coils that make up MR scanners and system diagrams for both the RF transmit and receive paths. The talk with then narrow in scope to look at how these RF coils are modeled and controlled in both transmit and receive states and how these components are used for transmit/receive switching and patient and equipment protection.